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Abstract:
For many applications, such as commodity chemical production,
ore leaching, waste treatment, and environmental remediation,
bioprocesses can be less expensive, more energy-efficient, and
more environmentally friendly than conventional processes. The
key to effective implementation of bioprocesses is rational
design, optimization, and process control. We are applying the
tools of intelligent systems to develop supervisory systems for
the optimization and control of continuous, dynamic, and
uncharacterized bioprocesses. We have designed, built, and
evaluated hierarchical hardware and software systems for the
control of microbial oxidation of soluble iron in a continuous
stirred tank reactor. The supervisory control module uses
stochastic learning to determine what system parameters (i.e.,
pH, dilution rate, and temperature) should be, based on the
state of the system. An expert-based flow-rate controller
optimizes reactor performance for each set of system param-
eters. Theoretically, high reactor conversion can be obtained
much faster by varying these multiple parameters simulta-
neously as opposed to the traditional method of varying a single
parameter at any given instance.

1. Introduction
Operating a reactor such that the yield of a specific

product is at a maximal level has been an important topic in
chemical engineering. Typically, a model of the system is
formulated around the reaction kinetics and type of reactor.
From this point, an optimization problem can usually be
solved and the optimal operating conditions determined.
These optimal parameters are used as set points for the
reactor control system. However, for biological systems, the
reaction kinetics of a new process involving a new substance
or reactant cannot usually be obtained unless a comprehen-
sive laboratory analysis has been carried out, which may take
considerable time to complete.

Development of control systems that do not depend on
comprehensive laboratory analyses yet reach optimal reactor
performance have been the focus of much research. Most of
the research on control systems has been done in support of
the food, pharmaceutical, and specialty-chemical industries.
These industries typically involve batch processes controlled
by expert systems or fuzzy expert systems. An example of
this control methodology applied to a batch bioprocesses
involves the work of Halme et al.1 and Hitzmann et al.2 Their
work incorporates the accumulated experience of plant

operators to determine the proper time course for batch
fermentation. Some applications have been found for neural-
network and fuzzy-logic systems. Kishimoto et al.3 have used
a fuzzy-logic control system for the glucose feed rate in the
production of glutamic acid. Oishi et al.4 simulated temper-
ature control in the sake brewing process using fuzzy logic.
Optimization-based techniques have been applied to batch
bioreactors, Sadhukhan et al.5 varied nutrient concentrations
important to the production of mycophenolic acid production.
The yield of mycophenolic acid as a function of five nutrients
were fit to a second-order polynomial equation. As more
data were gathered, better estimates for the optimal nutrient
concentrations were obtained.

A great deal of work on bioreactor control has been based
only on simulation. Manchanda et al.6 used this approach to
compare neural-network techniques to proportional-integral
(PI) and other advanced controllers. Chang and Chen7 studied
the effects of substrate inhibition. Optimization techniques
have also been applied to find ideal operating conditions for
complex batch bioreactor models. Torres et al.8,9 applied a
nonlinear optimization method, based on a stochastic multi-
start search algorithm. Two alternative nonlinear models of
the system were used in the optimization problem.

Optimization techniques have been applied to continuous
bioreactor models. Tsoneva and Patariska10 developed an
optimal control algorithm for a continuous fermentation
process. This algorithm involves a three-layer control
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structure that takes a system from startup to optimal steady-
state conditions in minimal time. The control structure relies
on optimizing a mathematical model of the fermentation
process by a decomposition method, based on an augmented
Lagrange function. Nguang and Chen11 also modeled a
continuous fermentation process with a set of differential
equations. Applying a recursive least-squares algorithm to
the discretized model results in an online estimation scheme
for optimal set points of feed concentration and dilution rates.
This method is similar to Model Predictive Control.

Rational design and control of continuous, dynamic, and
uncharacterized bioprocess is an extremely complex task;
as the composition of the feed materials can vary with time,
process parameters may vary, and many interacting species
of microorganisms may be involved. Model-based optimiza-
tion procedures require some understanding of the system
to which they are being applied. Thus, they are inappropriate
control technologies for the uncharacterized, highly variable
bioprocesses. In addition, the changing physical and chemical
conditions and microbial populations in dynamic biopro-
cesses make it vital that the control system be robust and
able to adapt to changing conditions. Because learning-based
control systems require a minimum of information before
being implemented, they address the requirements for mining
bioprocesses better than knowledge- or model-based control
systems. Furthermore, the conventional approach to charac-
terizing the effects of process parameters on microbial
activity is to vary one parameter at a time, while holding all
other conditions constant. Many of these experiments assume
that parameter effects are de-coupled or independent of each
other. Experiments that vary one parameter at a time provide
a considerable amount of data. However, these types of
experiments may not be appropriate for evaluating the
metabolic response of microorganisms to a “real world”
bioprocessing environment such as a mineral leaching or
environmental remediation in which multiple parameters are
continuously changing. A process optimization scheme that
simultaneously varies more than one parameter is required
to better understand the response of bacteria to the changing
physical and chemical conditions that may be encountered
within a mining environment. Therefore, the objective of this
study was to evaluate the ability of the hybrid control system,
with its integral “learning” program, to control and optimize
a process for which little expert knowledge and no analytical
model was available. Details of the microbiological response
to changing conditions were previously presented else-
where.12

2. Biological System Description
Two iron-oxidizing bacterial cultures that thrive in acidic

environments were used in this study. The cultures differed
in their carbon source requirements, their growth temperature
range, and the amount of “expert knowledge” that was

available. One culture was an uncharacterized moderate
thermophilic culture that was obtained from a mining
operation by cultivation at 55°C in an acidic medium (pH
1.8) containing yeast extract and iron.12 In contrast, the
second iron-oxidizing culture,Acidithiobacillus (Thiobacil-
lus) ferrooxidans, has been well characterized in over 50
years of study.13 This bacterium uses carbon dioxide as its
carbon substrate and grows well in acidic medium (pH≈ 2)
within a temperature range of 20-32 °C. There have been
many studies that have examined the effects of parameters
such as pH, temperature, air and CO2 sparging rates, heavy
metal concentration, and medium composition on the me-
tabolism ofA. ferrooxidans.14-21 In addition, the bioener-
getics and genetics involved with mineral oxidation have
been examined in great detail,22,23 and there have been a
number of analytical models developed which are used to
describe mineral oxidation by this bacterium.24-27

The majority of bioprocesses, particularly fermentation
processes for the food, pharmaceutical, and specialty chemi-
cal industries, utilize pure cultures that have been well
described. At the start of this study, the number of distinct
species present in the enrichment culture was unknown.12

Furthermore, all that was known about the culture was the
cultivation medium, relative growth rate, and temperature
range.12 The metabolic mechanisms and yield coefficients
for iron oxidation by the uncharacterized culture were
unknown. Thus, there was insufficient information to develop
a model for the enrichment culture.
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3. Control System Description
Once the continuous bioreactor was inoculated with the

cultures discussed above, the optimal operating conditions
of the bioreactor needed to be determined. The conditions
important for maximum bioreactor production include:

• inlet volumetric flow
• inlet iron(II) concentration
• pH of the chemostat
• temperature of the chemostat
These variables are relevant to a mineral leaching process.

Inlet iron concentration pertains to the process at hand, that
is, the production of oxidized iron. Temperature and pH are
physicochemical parameters that can significantly impact the
growth and activity of microorganisms and are usually
control variables in biological processes. Other parameters
which were measured, for example, oxygen concentration,
dissolved CO2, redox potential, were not selected as variables
for evaluating the stochastic learning algorithm because there
were no appropriate methods for controlling these parameters
within our system. The computer was used to control nutrient
feeds, pH using acid and base pumps, gas-flow valves, a
heater, and a stirrer.12 Gas flow rates were regulated via the
gas mass flow controllers but were not integrated into any
feedback control loops. The feed rate and inlet nutrient and
iron concentrations were delivered as specified using an
integrated set of pumps with fuzzy controllers. The pump
controllers automatically re-calibrated to ensure accurate
dilution rates and feed concentrations. Liquid level (working
volume∼1360 mL) was maintained by a drain tube located
on the side of the chemostat.

An on-line sensor system measured temperature (Cole-
Parmer, Vernon Hills, IL), pH (Ingold Electrodes, Inc.,
Wilmington, MA), oxidation-reduction potential (Ingold
Electrodes, Inc., Wilmington, MA), and dissolved oxygen
concentration (Ingold Electrodes, Inc., Wilmington, MA).
Off-line measurements were made for biomass as determined
by direct cell counts, iron(II) concentration, iron(III) con-
centration, total organic carbon (TOC) and dissolved organic
carbon (DOC). For cell counts, cells were collected by
filtration, stained on the filter with acridine orange (total
counts) or fluorescein-conjugated wheat germ agglutinin for
the Newmont thermophilic culture, and viewed using epif-
luorescence microscopy.28 The concentration of iron(II) in
duplicate samples was determined by titration with potassium
dichromate or potassium permanganate.29 The concentration
of iron(III) in filtered samples was determined in duplicate
by ultraviolet absorption spectroscopy at a wavelength of
304 nm.30 Total iron was calculated by summation of the
average of the iron(II) and iron(III) concentrations. TOC and
DOC were determined on unfiltered and filtered samples,
respectively, using a Shimadzu model TOC 5000 total

organic carbon analyzer.
Optimality was determined by defining productivity as

follows:

Where:

The resulting optimization problem then becomes to find
the flow rate (F), inlet iron(II) concentration ([Fe2+]), pH of
chemostat (pH), and temperature of chemostat (T) that result
in a maximum productivity. In this paper, productivity was
defined as being dependent only on the conversion of iron(II)
to iron(III). Thus, f ) 1 and only iron(II) concentration,
iron(III) concentration, and the flow rate need to be measured
to calculate productivity. This section describes a supervisory
control system, the BioExpert, and two of its sub-controllers;
the flow-rate controller and the stochastic optimization
procedure that are designed to solve this optimization
problem.

The stochastic optimization algorithm and flow controller
interact as follows:

1. Set the algorithm step counter,k, to 0. Run the reactor
to steady state for a given temperature (SetPtcurrent

temperature),
pH (SetPtcurrent

pH ), iron(II) concentration (SetPtcurrent
Fe ),

and flow rate (Frate
current) combination.

2. Calculate the production rate,Pk, (see eqs 1-4).
3. Pick a new flow rate based on algorithm defined in

Section 3.1,Frate
current, k ) k + 1.

4. Run the reactor to steady state (see steady-state criterion
below).

5. Calculate the production rate,Pk, (see eqs 1-4).
6. Has the peak production rate,Pk, for this set point step

(temperature, pH, and iron concentration) been reached?
If k g 4 and|Pk - Pk - 1| e 1 mL, then

YES: pick a new pH, temperature, and iron(II)
concentration based on the stochastic learning
algorithm defined in section 3.2
go to Step 1

Else
NO: go to Step 3

Determining whether the chemostat is operating at steady-
state was one of the key steps used by the BioExpert. Using
the on-line and off-line data and messages concerning
changes in set points, the BioExpert determined whether the
chemostat was in transition, at steady state or being “washed
out”. Reactor-state determinations were made using the
following criteria. The reactor was defined to be at steady

(28) Fife, D. J.; Bruhn, D. F.; Miller, K. S.; Stoner, D. L. Evaluation of a
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P ) f (PIRON) + (1 - f)(PCELLS) (1)

0 e f e 1 (2)

PIRON ) [ [Fe+3]

[Fe+2] + [Fe+3]] × Frate
current (3)

PCELLS ) [suspended cell numbers

1 × 108 ] × Frate
current (4)
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state when the following conditions were met:
• no set point changes for at least 5 residence times
• the redox values change less than 10%
• the [Fe2+] and [Fe3+] concentrations change less than
10%
• TOC changes less than 25%
Likewise, the reactor was defined to be at washout when

all of the following conditions were met:
• more than two residence times had passed since last set
point change
• TOC decreased by more than 50%
• redox values decreased by more than 25%
• [Fe2+] concentration increased by more than 10%
• [Fe3+] concentration decreased by more than 10%
If the reactor was not at steady state or at washout, it

was said to be in transition. This occurred whenever a set
point was changed and the conditions for the other two states
had not been met.

3.1. Best Fit Control of Flow. The flow-rate controller
discussed above was based on the combination of an expert
system and a best-fit control concept. This controller was
used to “fine-tune” the flow rate for each set of environ-
mental conditions set by the stochastic learning algorithm.
When environmental conditions remain constant (i.e., tem-
perature, inlet iron(II) concentration, and pH), the productiv-
ity increases with increasing flow rate (see eqs 1-4).
However, increasing the flow rate also decreases the
residence time in the chemostat and promotes washout
conditions. Due to these off-setting dynamics, the best-fit
control concept assumed that flow rate,Frate, versus produc-
tivity, P, fits a parabolic curve for a fixed set of environ-
mental conditions. On the basis of expert knowledge, the
flow-rate control system selected the initial three flow rates
for the best-fit control algorithm, see below. Using the
productivity values from the three initial flow rates, the best-
fit controller solved for the flow rate that maximizes the
parabolic productivity curve. Additional flow-rate data were
added to the initial data for each new iteration.

The flow rate expert system was defined as follows:
1. The initial flow rate,Frate

1 was selected by the operator
for the first controller parameter set including pH, temper-
ature, and inlet iron(II) concentration. Alternatively, the
expert system initializes its flow rate using the center of the
allowable range, in this case 5 mL/min. For the subsequent
control parameter sets, the first flow rate evaluated in each
set of parameters was the last flow rate evaluated in the
previous set (SetPtcurrent

temperature, SetPtcurrent
pH , SetPtcurrent

Fe ). For
example, the first flow rate evaluated in Run D, was the last
flow rate evaluated in Run C.

2. The second flow rate was chosen using the following
logic:

3. The third flow rate was chosen as:
If Frate

1 e Frate
2 then

Else

Else

Else

4. After three flow rates had been evaluated, the flow
controller switched from the expert system to the parabolic
fitting algorithm. A least squares parabolic fit for productiv-
ity, P, versus flow rate,Frate, curve was obtained by solving
the following equation:

where

Equation 5 was solved using a singular value decomposition

(SVD) that produced the pseudo-inverse ofA on the left.
After a parabolic fit to the data was obtained, the critical
point of the parabola was used to calculate the next flow
rate target.

5. For the subsequent flow rates, the parabolic fitting
algorithm from the previous step was repeated.

3.2. Stochastic Learning Controllers. A stochastic
learning algorithm31 was used to determine the optimal pH,

(31) Johnson, J. A.; Stoner, D. L.; Larsen, E. D.; Miller, K. S.; Tolle, C. R.
Learning-Based Controller for Biotechnology Processing, and Method of
Using. U.S. Pat. Appl., Docket No. 14233.12.

If Frate
1 e 7

mL
min

then

Frate
target) 1.5Frate

1

Else

Frate
target)

Frate
1

1.5

If P(Frate
1 ) e P(Frate

2 ) then

Frate
target) 1.5Frate

2

Frate
target)

Frate
1

1.5

If P(Frate
2 ) e P(Frate

1 ) then

Frate
target) 1.5Frate

1

Frate
target)

Frate
2

1.5

AB ) Y (5)

A ) [1 Frate
1 (Frate

1 )2

1 Frate
2 (Frate

2 )2

‚
‚
‚

1 Frate
current (Frate

current)2
] (6)

B ) [b0 b1 b2]
T (7)

Y ) [P(Frate
1 ) P(Frate

2 ) . . . P(Frate
current)] T (8)

Ptarget) P(Frate
target) ) b0 + b1Frate

target + b2(Frate
target)2 (9)

dP(Frate
target)

dFrate
target

) b1 + 2b2Frate
target) 0 (10)

Frate
target)

-b1

2b2
(11)
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temperature, and iron concentration set points. This algorithm
was similar to, but distinct from, one investigated by Moore32

and Franklin.33 Instead of a traditional Gaussian density
function, the density function consisted of two-half-Gaussian
density functions. The approach differed in that the learning
algorithm unevenly biased the two-sided Gaussian density
functions that were used to choose the next set point. This
was done to bracket the optimal solution more readily.

By using the mean of two-half-Gaussian density functions,
which are divided at each one’s traditional mean, the mean
of this new density function remains the same as a traditional
Gaussian.

The learning algorithm operated simultaneously for the
three parameters that were evaluated, pH (SetPtx

pH), tem-
perature (SetPtx

temperature), and iron concentration (SetPtx
Fe).

The initial mean was chosen as a guess at where the
productivity,P, maximum was located (Figure 1a, Table 1).
The initial widths or standard deviations (σR

x andσL
x) of the

density functions were chosen to span a reasonable operating
range for each parameter (Figure 1a, Table 1).

The stochastic learning takes place by adjusting the
density functions, that is, mean and standard deviation,
depending on the relative production rates. If the production
rate improved with a tested set point,T1, the new mean (m̂)
of the density function was shifted to that set point. Also,
the right and left standard deviations were changed to reflect
the shift of the density function towards the increase in
productivity (Figure 1b). For example, if an increase in
temperature resulted in an increase in productivity, the right
side standard deviation was increased and the left side
standard deviation was decreased. However, if the rate did
not improve, the mean of the density function did not change,
and the width of the density function in the direction of the
set point was decreased, and the other side’s width was
increased (Figure 1c). The choice for each new set point was
made by using a random number generator based on the new
two-sided Gaussian density functions (such asT1 in Figure
1a).

The current stochastic learning algorithm is summarized
as follows:

Initialize the density functions:

Repeat forever:

Calculate the standard deviation change:

Else

Else

Else

Please note thatx represents either pH, temperature, or
inlet iron(II) concentration (see Tables 1 and 2 for initial
values and scaling factors).

4. Results of Flow-Rate Control
The effect of the flow rate controller was initially

investigated. The data gathered from this investigation is

(32) Moore, K. L. IteratiVe learning control for deterministic systems; Series
on Advances in Industrial Control; Springer-Verlag: New York, 1993.

(33) Franklin, J. A. Refinement of robot motor skills through reinforcement
learning.Proceedings of the IEEE 27th International Symposium on Decision
and Control; IEEE Control Systems Society; New York, NY, pp 1096-
1101.

SetPtbest
x ) m̂xj

σR
x ) σiR

x

σL
x ) σiL

x

SelectSetPtcurrent
x , evaluatePcurrent

∆σx ) Scx |SetPtcurrent
x - SetPtbest

x

SetPtbest
x |

If Pcurrent> Pbest

If SetPtbest
x < SetPtcurrent

x then

SetPtbest
x ) SetPtcurrent

x

Pbest) Pcurrent

m̂xj ) SetPtcurrent
x

σR
x ) σR

x + ∆σx and

σL
x ) σL

x - ∆σx

SetPtbest
x ) SetPtcurrent

x

Pbest) Pcurrent

m̂xj ) SetPtcurrent
x

σR
x ) σR

x - ∆σx and

σL
x ) σL

x + ∆σx

If SetPtbest
x < SetPtcurrent

x then

σR
x ) σR

x - ∆σx and

σL
x ) σL

x + ∆σx

σR
x ) σR

x + ∆σx and

σL
x ) σL

x - ∆σx

If σR
x < 0.001 then σR

x ) 0.001

If σL
x < 0.001 then σL

x ) 0.001

Loop

xj ) ∫-∞

+∞
x fx(x)dx (12)

) 1

x2πσL
2
∫-∞

m̂
x exp(-(x - m̂)2

2σL
2 ) dx +

1

x2πσR
2
∫m̂

+∞
x exp(-(x - m̂)

2

2σR
2 )dx (13)

) m̂
2

+ m̂
2

(14)

) m̂ (15)
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shown in Table 3. The stochastic learning controller set the
operating environments and the flow controller selected a
sequence of flow rates attempting to produce the optimal
productivity for each set of operating parameters. The values
reported for suspended cell density, [Fe3+], conversion, and
production (mL/min) are the values obtained when the
chemostat was operated at the flow rate that achieved the
maximum iron production for that set of conditions. Figure
2 (Run F) shows a typical parabolic fitting to estimate
optimum flow rate.

For Run A (pH 1.8, 45°C, 50 mM [Fe2+]) productivity
data for flow rates of 4, 6, and 9 mL/min were fitted to a
parabola and used predict optimum productivity at a flow
of 7.01 mL/min. This flow rate was validated by the final
run at a flow rate of 7 mL/min.

There was no curve fitting procedure for Run B (pH 1.84,
51.5 °C, 47.15 mM [Fe2+]) which was terminated by the
operator due to washout even at the lower flow rate of 2.0

mL/min. Run C (pH 1.8, 45°C, and 50 mM iron) was a
repeat of run A to assess whether the chemostat had
recoVeredfrom near washout conditions. A comparison of
data obtained from runs A and C indicates that the
microorganisms recovered from an adverse environment.

During Run D, the computer had predicted that maximum
productivity would occur at 11.2 mL/min. The final produc-
tivity for this run was a value of 5.183 mL/min compared to
8.5 mL/min that was achieved at a flow rate of 11.1 mL/
min. Nevertheless, because the final curve fitting procedure
using the complete set of data had a optimal flow rate that
was comparable to the one that was predicted (11.2 mL/
min), the data set was considered validated, and the computer
selected the next set of parameters to evaluate.

Run E was not completed due to a malfunction in the
hard drive the computer. During Run F (see Figure 2), six
flow rates were required to select and validate the maximum
productivity. A rather shallow curve was obtained that did
not have a strong maximum. Comparable productivity values
were obtained at the similar flow rates that were evaluated
in both Runs E and F.

Run G (see Figure 3; pH 2.3, 39.7°C, and 45.5 mM iron)
illustrated a situation where the range of achievable flow
rates did not contain the global optimum. The productivity
was so low that it could only be improved by increasing
flow rate. Since the initial values were only on one side of
the parabola, the curve fitting procedure produced in an
inverted parabola and a target maximum could not be
determined. Human operators ultimately terminated the run
because requested flow rates had exceeded the pumping
capacity of the small tubing that was installed in the
peristaltic pumps. If the higher flow rates could have been
achieved, the washout dynamics would have been more
significant and on optimum flow rate should have been
found. Nevertheless, for purposes of discussion and com-
parison to other runs, the data obtained at the flow rate of
12.75 was utilized.

The behavior of the reactor in Run H (pH 1.7, 39.9°C,
and 39.9 mM iron) was such that the maximum productivity
was easily predicted and validated according to the pro-
grammed procedure.

5. Results of Learning-Based Control
Now we examine the results of the stochastic learning

controller. To set the initial conditions and scaling factors,
some knowledge of the culture is required. However, little
was known about this iron-oxidizing culture other than it
was “enriched” from a sample acquired from a heap leaching
operation by cultivation at 55°C in an acidic (pH 1.8)
medium containing yeast extract and Fe2+.34 With this vague
knowledge, runs 1-6 in Table 4 were operated with the
control decisions made by the human operator using the
conventional approach of varying a single parameter while
holding the others constant. This portion of the experiment
was run at a pH 2, an inlet iron(II) concentration of 50 mM
and a flow rate of 7mL/min with temperatures of 40, 30,
50, 45, and 60°C (see Table 4). Steady-state control

(34) Brierley, J. A. Personal communication, 1996.

Figure 1. Two-sided Gaussian: (a) initial density function, (b)
improvement in productivity, and (c) no improvement in
productivity.

Table 1. Initial Gaussian density functions (xj, σR
x, σL

x)

x m̂xj σR
x σL

x

pH 1.8 0.5 0.5
temperature 45 5.0 5.0
[Fe2+] 50 15.0 15.0

Table 2. Scaling factors for ∆σx calculations

x Scx

pH 0.17
temperature 1.67
[Fe2+] 5.0

304 • Vol. 5, No. 3, 2001 / Organic Process Research & Development



descisions were made with an intelligent control system
described by Stoner at al.12 The productivity during these
runs was moderate and the reactor was not in danger of a
“washout” situation and a valid starting point was established.

With knowledge about an acceptable temperature range
and valid initial conditions, the stochastic learning controller
and flow controller was operated. Data from these runs when
the flow rate was near 7mL/min are shown as runs 7-15 in

Table 3. Effects of multi-parametric changes on the growth and iron oxidation by the Newmont moderately thermophilic
culture

parameter Set values at maximum productivity

run °C pH
inlet [Fe2+]

(mM)
flow rates
(mL/min)

biomass
(cells/mL)

outlet [Fe3+]
(mM)

conversion
(%)

productivity
(mL/min)

A 45 1.8 50 4, 6, 9, 7.03a 7.6× 107 45.08 86.6 6.31
B 51.5 1.84 47.15 7,2a 2.91× 105 4.24 9.6 0.19
C 45 1.8 50 7, 4.67, 10.5, 7.45a 7.33× 107 42.88 83.1 6.193
D 40.7 1.9 34.48 7.45, 4.93, 11.1, 12, 11.2a 1.62× 107 16.28 46.3 5.183
E 53.3 1.64 60.65 11.1, 7.4, 12, 9.6a incomplete run - no data
F 53.3 1.64 60.65 4. 5, 7.5, 11.25, 9.17, 12, 8.52a 2.98× 107 35.56 57.4 4.891
G 39.7 2.3 45.5 8.55, 5.73, 12, 12.75b, 15.4, 21 2.28× 107 5.4 11.3 1.4
H 39.9 1.7 39.94 5.2, 7.8, 11.7, 9.19a 3.14× 107 27.74 68.3 6.32

a Values obtained at the flow rate for which maximum productivity was achieved.b Liquid feed system unable to deliver calculated flow rate. Values are for flow
rate of 12.75 mL/min.

Figure 2. Run F flow-rate calculations.

Figure 3. Run G flow-rate calculations.
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Table 4. The productivity during these runs was significantly
higher than the first set of runs. This indicates that the
stochastic learning algorithm should find the optimal operat-
ing conditions faster than the conventional technique. During
runs 16-24 (see Table 4), the flow controller was not used
and the flow rate was held constant at 7 mL/min. With this
change, steady state conditions could be reached much faster
and the stochastic learning controller performance could be
evaluated independently from the flow controller.

The results shown in Figure 4 for the combined stochastic
and flow rate optimization control system clearly show that
the assumption of coupled environmental parameters is

correct. This is an important result, since the biological
community tends to assume the decoupling of the environ-
mental parameters as they investigate a new bacterium. The
productivity space for the entire series of runs is shown in
Figure 5. By the end of the runs, the stochastic learning
controller is consistently choosing operating conditions that
result in over 90% iron(II) conversion. Please note that
increased productivity corresponds to increased sphere
diameter in Figures 4 and 5.

To contrast results obtained with the stochastic controller
with alternative approaches we need to consider the data from
the earlier experiment that are included in Figure 5 as runs

Table 4. Effects of multiparametric changes on the growth and iron oxidation by the Newmont moderately thermophilic culture
(near constant flow rate)

parameter Set values at maximum productivity

run °C pH
inlet [Fe2+]

(mM)
flow rates
(mL/min)

biomass
(cells/mL)× 10-6

outlet [Fe3+]
(mM)

conversion
(%)

productivity
(mL/min)

1 40 2 50 7 9.9 21.96 42.9 3.005
2 30 2 50 7 4.71 19.66 37.8 2.647
3 50 2 50 7 18.7 23.64 47.1 3.294
4 45 2 50 7 14.2 19.94 39.1 2.740
5 55 2 50 7 21.2 20.74 41.0 2.873
6 60 2 50 7 1.7 12.22 24.2 1.697
7 45 1.8 50 7.03 76 45.08 86.6 6.091
8 45 1.8 50 7 105 48.8 95.6 6.711
9 51.5 1.84 47.15 7 4.4 10.27 21.4 1.497

10 45 1.8 50 7 82.9 43.12 83.7 5.859
11 45 1.8 50 7.45 73.3 42.88 83.1 6.193
12 40.7 1.9 34.48 7.4 29 27.7 81.8 6.064
13 53.3 1.64 60.65 7.4 85.1 46.36 76.5 5.660
14 53.3 1.64 60.65 7.5 70.4 48.32 76.0 5.701
15 39.9 1.7 39.94 7.8 31.5 26.92 65.2 5.084
16 32 1.7 50 7 35.8 22.04 43.2 3.023
17 38.7 1.69 17.14 7 21.3 0.769 4.3 0.303
18 34 1.69 53.61 7 1.0 2.45 4.5 0.315
19 45 1.87 51.33 7 66.5 32.28 63.1 4.417
20 43 1.94 16.82 7 54.7 14.19 88.7 6.212
21 36.8 1.84 31.05 7 23 16.14 51.0 3.571
22 45.9 1.87 21.74 7 83.8 20.66 93.8 6.563
23 43.6 1.8 28.9 7 45.9 27.04 94.7 6.626
24 44 1.81 34 7 44.8 34.2 96.0 6.720

Figure 4. The stochastic and flow optimization controllers four-dimensional learned productivity space.
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1-6. The results of this experiment had indicated that there
was little effect of temperature on the productivity rate. This
earlier conclusion that was dramatically different than the
one reached later when pH, temperature, along with inlet
iron concentration were varied and the interactive effects
between pH and temperature could be discerned.

6. Conclusions
The standard assumption made in biological experimenta-

tion is that thebiologicalcontrols, that is, the environmental
parameters, are decoupled. This assumption allows for the
search of an optimal production environment through the
mapping of the data space one parameter at a time. This
control system was designed around the opposite assumption,
primarily that the biological controls are coupled. Through
the testing of this system, it has been shown that coupled
parameters is the only plausible assumption that can be made
for this biological system.12

The current implementation of this system appeared to
function as desired. Moreover, this reactor and control system
provided a valuablereal world means for testing new and
improved control system concepts in model less environ-

ments. This not withstanding, many of the subsystems can
be improved. Currently, this control system environment is
being updated to test gas-phase limited substrates through
permeable membranes. Methods for adding gradient based
productivity updates are being studied as possible additions
to the stochastic learning algorithm presented within this
paper. Last, stochastic control techniques that do not require
expert knowledge may be applied to the flow rate subcon-
troller. This control system serves as an example of what
the microbiological research teams currently need for study-
ing newly discovered uncharacterized microorganisms.
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Figure 5. The stochastic optimization controller four-dimensional learned productivity space.
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